GPS Meteorology in Europe

COST716, EUREF and EUMETNET

Sylvia Barlag, John Nash, Henrik Vedel, Hans van der Marel, Hans-Peter Plag, Elmar Brockmann
Issues addressed

- What can GPS geodesy do for meteorology? The COST716 results.
- The organisation of meteorology
- A proposal to tackle the challenge of co-ordination between voluntary co-operations (EUREF, IGS) and operational public meteorology
GPS meteorology: results from COST716

- Voluntary network for near real time exchange of atmospheric GPS data
- Meteorological GPS network requirements
 - Example: requirements for regional Numerical Weather Prediction (NWP)
- Applications development
 - Operational forecasting (nowcasting)
 - Numerical Weather Prediction
 - Climate monitoring and research
NRT Demonstration

Started March 2001

Status March 2004:
• 428 stations
• 10 operational ACs:
 GFZ, GOPE, IEEC, ASI, LPT, NKG, NKGS, ACRI, SGN, BKG

http://www.knmi.nl/samenw/cost716.html
GPS data providers which contribute to the NRT demonstration are:

- International GPS Service (IGS)
- EUREF Permanent GPS Network (EPN)
- National Mapping Agencies (OS, BKG, SAPOS, SWEPOS, NMA, LPT, …)
- National Meteorological Services (Met.Office, DWD, …)
- Universities and research networks
- Private companies

GPS data collection is handled by the analysis centers:
- uses IGS and EPN data centers, completed with several local data centers, resulting in a dense network
- analysis centers often have access to unique sources of data which are otherwise not available to the public
Development of NRT GPS meteorology
Meteorological Requirements for NWP

<table>
<thead>
<tr>
<th></th>
<th>ZTD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>target</td>
</tr>
<tr>
<td>Hor. domain</td>
<td>Regional</td>
</tr>
<tr>
<td>Hor. distance</td>
<td>30 km</td>
</tr>
<tr>
<td>Rep. cycle</td>
<td>15 ‘</td>
</tr>
<tr>
<td>Integr. time</td>
<td>MIN(15’, Rep.cyc.)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>3 mm</td>
</tr>
<tr>
<td>Timeliness</td>
<td>30 ‘</td>
</tr>
</tbody>
</table>

- { network design }
- { processing strategy }

Delay time in which 75% of obs have arrived
Validation example

Validating model equivalents

Validating radiosonde observations
Applications: Nowcasting

Thunderstorm development over the Netherlands in conditions with ‘dry’ upper tropospheric eye (Meteosat image) overlying higher lower level humidity (GPS contours)
Applications: NWP

From left to right:
Radar rain observations
NWP forecast without use of GPS observations in analysis phase
NWP forecast with GPS
The signal we must look for: IWV trend in re-analysed data is ± 0.05 kg/m²/yr (blue line).

Differences between EUREF PP solutions and GFZ NRT Solution for Delft
The way ahead...

- Research continued in TOUGH (2003-2006)
- EUMETNET project proposed at COST final workshop
 - Organisation of National Meteorological Services
 - Special project proposed to take actions to prepare the European GPS water vapour network to function operationally
 - Proposal written by John Nash (Met.Office)
 - 3 year project to be started in 2005
- Geodetic interface to the EUMETNET project*)
 - Task given to Hans van der Marel, Elmar Brockmann, Hans-Peter Plag and Gerd Gendt by the COST 716 MC
 - Suggested to contact EUREF and IGS first
 - Letter of COST 716 chair to EUREF/TWG chair

*) the mandate is a little broader: the complete meteorological community
Organisation of meteorology

- **World** Meteorological Organisation
 - Based on voluntary co-operation, but highly structured
- **European** organisations:
 - European Centre for Medium-range Weather Forecasts (**ECMWF**, global NWP)
 - European Organisation for the Exploitation of Meteorological Satellites (**EUMETSAT**)
 - European Meteorological Network (**EUMETNET**)
- **National** organisations
 - National Weather Services (governmental institutions)
 - Commercial Service Providers (companies)
World Weather Watch Programme
GOS system
EUMETNET, a conference of 19 European Meteorological Services

- Scope of co-operation:
 - Obs systems
 - Data
 - Forecasting
 - R&D
 - Training/education
 - and <TBD> by council

- through:
 - Core programmes (GNI %)
 - Optional programmes

- structure:
 - Governed by Council (CEO’s)
 - Guided by Co-ord. Office
EUMETNET programmes and projects

- Programme Board for Observations (PB-OBS) recommends a proposed new activity to Council (proposal commented by PB-OBS)
- Council decides on the new activity’s scope and budget
- CO calls for responsible members using the proposed activity’s description (proposal+ amendments), and time and budget constraints
- CO guides the selection process
- Council selects a responsible member
- Responsible member manages contracts (plus budgets) with others
Project examples

EUCOS design (Eumetnet Composite Observing System) Surface obs component

Sensor studies and intercomparisons
Reports and guidelines
A EUMETNET GPS programme

- Responsible member (manager) and 3 expert teams:
- Operational liaison group
 - Ensure continuity of the European network
 - Promote cost/benefit sharing between parties
 - Liaise with geodetic community (data providers and processing centres)
 - Establish data processing policies
- Expert team on data processing
 - Review user requirements
 - Monitor (progress in) data quality
- Promote applications
 - Provide support and documentation
 - Review progress in applications
EUMETNET (E-GVAP) Objectives

- Prepare and coordinate future operational processing of GPS water vapour on both European and national scales
- Transfer from research funding to operational service as fast as possible in liaison with the geodetic community
- Establish a data hub for GPS ZTD and quality monitoring facility
- Activities will be designed to improve meteorological collaboration with operators of national GPS sensor networks,
 - by sharing facilities for reducing operational costs
 - by providing feedback of meteorological data
- Liaise with geodetic data processing centers to establish a long term policy for processing operational GPS water vapour measurements, and to co-ordinate national/regional processing efforts to ensure availability of data from the whole of Europe
- Promotion, standards, etc.
Potential benefits for GPS community

- Cost sharing
 - Common stations
 - Communications
- NRT quality monitoring hub
- Use of meteorological products
 - Atmospheric loading effects, a-priori ZTD for GPS processing
 - Mapping functions from numerical weather models
 - Atmospheric delay corrections for Network RTK
- Use of meteorological services
 - Calibration of pressure sensors
 - Management of meteo equipment at GPS sites by NMS