Impact of mixing antenna calibration - lesson from EPN-Repro2

A. Araszkiewicz

Military University of Technology

EPN-repro2 memories

\checkmark MU1 (EPN individual calibrations + IGS type mean) vs MU4 (IGS type mean)
\checkmark Coordinate differences and the impact on:

- network alignment
- stability of the time series
- size of the jumps

Mismatch of coordinates

$\checkmark 110$ antennas and 75 stations affected

Mismatch of coordinates

$\checkmark 110$ antennas and 75 stations affected
\checkmark Coordinate differences vary from -11.7 mm to 2.7 mm for North

- 3.7 mm to 4.1 mm for East
-13.9 mm to 11.9 mm for Up
$\checkmark 110$ antennas and 75 stations affected
\checkmark Coordinate differences vary from -11.7 mm to 2.7 mm for North
- 3.7 mm to 4.1 mm for East
-13.9 mm to 11.9 mm for Up

\checkmark Mean values

Mismatch of coordinates

Horizontal offsets

Mismatch of coordinates

Vertical offsets

Reference stations - Alignment

$\checkmark 8$ of 46 reference stations are affected (valid for GPSWEEK 1768)

Station	Offset [mm]			Station	Offset [mm]		
	North	East	Up		North	East	Up
ANKR ${ }^{\text {TP }}$	0.4 ± 0.2	0.8 ± 0.3	2.0 ± 0.5	NICO ${ }^{\text {L4 }}$	-0.1 ± 0.3	0.2 ± 0.5	-1.6 ± 0.7
BUCULG	1.7 ± 0.3	-1.3 ± 0.2	-0.8 ± 0.5	RIGA ${ }^{\text {L4 }}$	1.1 ± 0.3	-0.2 ± 0.4	-0.5 ± 0.7
HOFNL4	2.0 ± 0.4	-0.6 ± 0.6	-0.4 ± 0.7	SOFI ${ }^{\text {L3 }}$	-1.9 ± 0.3	2.4 ± 0.3	-8.6 ± 0.7
METS AS	-2.0 ± 0.3	1.5 ± 0.3	0.0 ± 0.6	WTZR ${ }^{\text {L3 }}$	0.4 ± 0.3	0.6 ± 0.3	2.5 ± 0.5

ASASH700936C_M NONE; LG LEIAT504GG LEIS; L3LEIAT25.R3 LEIT; L4 LEIAT25.R4 LEIT;TP TPSCR3_GGD CONE.

Reference stations - Alignment

$\checkmark 8$ of 46 reference stations are affected (valid for GPSWEEK 1768)
\checkmark No significant impact on frame realisation

$\checkmark 33$ jumps investigated (individual to individual vs type mean to type mean)

Individual

Type mean

	BUTE [Hungary]:								
							201		
	072008	2009	2010	2011	2012	2013	2014	2015	201

Jumps

$\checkmark 33$ jumps investigated (individual to individual vs type mean to type mean)
\checkmark Results are inconclusive
$\checkmark 33$ jumps investigated (individual to individual vs type mean to type mean)
\checkmark Results are inconclusive
\checkmark Slightly larger jumps for individual calibrations in Up component
$\checkmark 33$ jumps investigated (individual to individual vs type mean to type mean)
\checkmark Results are inconclusive
\checkmark Slightly larger jumps for individual calibrations in Up component

Coordinates repeatability

\checkmark A slight improvement [51\% (North) and 53\% (East) coordinate time series have smaller std.] in the horizontal components, if the individual calibrations are used.
\checkmark Worse repeatability in Up component for $\mathbf{5 9 \%}$ analyzed antennas, if individual calibrations are used instead of IGS type mean.
\checkmark No type-dependent effect.

	North	East	Up
Mean improvement:	$0.9 \mathrm{~mm}(57)^{*}$	$0.9 \mathrm{~mm}(59)$	$2.4 \mathrm{~mm}(46)$
Mean degradation:	$0.9 \mathrm{~mm}(54)$	$0.9 \mathrm{~mm}(51)$	$2.1 \mathrm{~mm}(65)$

Summary

There is no clear indication that any ground antenna phase centre corrections is superior to the other.
> Statistically, individual calibrations slightly improve the horizontal part [in 55\%] and degrade the heights [in 63\%] in all three aspects [annual signal, repeatability, jumps].

